Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 55(4): 265, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37433975

ABSTRACT

In vitro and in vivo experiments were carried out to investigate the effects of the supplementation of different levels of humic and fulvic acids alone or their combination (2:1 ratio) on ruminal fermentation constituents, and nutrients digestibility in goats. The treatments in Exp. 1 were the following: (1) basal substrate (50% concentrate: 50% forage) was incubated humic at 0, 2, 4, and 6 g/kg DM; (2) fulvic at 0, 1, 2, and 3 g/kg DM; and (3) a combination of humic and fulvic (in a 2:1 ratio) at 0, 3, 6, and 9 g/kg DM" of treatments. The results of Exp. 1 revealed that methane (CH4) production was linearly decreased (P < 0.001) upon increasing humic doses. Whereas, the combination of fulvic acid with humic acid resulted in a quadratic decrease (P < 0.001) in net CH4 production. Supplementing humic and fulvic acids, either separately or in combination, resulted in reduced (P < 0.05) ammonia nitrogen (NH3-N) and total volatile fatty acid (VFA) concentrations. In Exp. 2 to further examine the findings obtained in Exp. 1, forty Damascus non-lactating goats (2-3 years of age and body weight 29 ± 1.5 kg) were fed the same basal diet as in Exp. 1, plus one of four treatments. Treatments were the following: (1) control (no supplement); (2) basal diet plus 5 g humic alone; (3) basal diet plus 2.5 g fulvic alone, and (4) basal diet plus 7.5 g their combination. Goats fed diets supplemented with humic acid, fulvic acid, either alone or in combination, increased concentrations of butyrate (P = 0.003), total VFA (P < 0.001), and improved (P < 0.001) digestibility of nutrients, but reduced (P < 0.001) ruminal NH3-N concentrations. In conclusion, applying humic and fulvic acids alone or in combination attenuated in vitro CH4 production, while improved intake and diet digestibility without adverse effect on rumen fermentation profiles in Damascus goats.


Subject(s)
Goats , Humic Substances , Animals , Fermentation , Eating , Nutrients
2.
Front Vet Sci ; 10: 1181426, 2023.
Article in English | MEDLINE | ID: mdl-37377948

ABSTRACT

Introduction: Lasalocid is a feed additive widely used in ruminant nutrition and plays a crucial role in improving livestock productivity, digestibility, immunity, and overall wellbeing. The current study was conducted to investigate the effect of different levels of lasalocid (LAS) supplementation on growth performance, serum biochemistry, ruminal fermentation profile, in vitro nutrient digestibility, and gas production of growing goats. Methods: A total of 60 growing Aardi male goats with an average body weight of ~17.12 kg (3-month-old) were used for an 84-day trial. Animals were randomly divided into four treatment groups with 5 replicates of 3 goats each. All four groups were provided with a basal diet supplemented with lasalocid (LAS) at 0 (without supplementation; LAS0), 10 (LAS10), 20 (LAS20), or 30 (LAS30) ppm LAS/kg dry matter (DM). Feed intake was measured weekly, and goats were weighed every 2 weeks for an evaluation of the performance parameters. Blood samples were collected for the measurement of biochemical variables. In vitro nutrient digestibility and gas production were evaluated. Results and discussion: The supplementation of LAS at level 30 ppm/kg DM increased (P < 0.05) the body weight gain and average daily gain without linear or quadratic effect. The serum concentrations of high-density lipoprotein were significantly (P < 0.05) higher in the LAS20 group than in other groups with linear and quadratic effects, while low-density lipoprotein concentration was significantly lower in the LAS20 group than in LAS0 and LAS30 with a linear effect. Different levels of lasalocid supplementation had no effect on the ruminal fermentation profile, in vitro gas production, and nutrient digestibility. In conclusion, the addition of LAS (20-30 ppm/kg DM) to the goat's diet can improve the growth performance and lipoprotein profile.

3.
Animals (Basel) ; 13(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37174580

ABSTRACT

This study investigated the effect of co-ensiling increasing levels of artichoke bracts (Cynara cardunculus L.) with berseem (Trifolium alexandrinum L.) (100:0, 75:25, 50:50, 25:75, and 0:100, respectively) on silage quality after 0, 30, 60, and 120 days. Moreover, the in vitro rumen fermentation characteristics and methane (CH4) and ammonia (NH3-N) production were evaluated using a buffalo inoculum source. The results showed that pH of the silage and the concentration of acetic, propionic, butyric acid, and NH3-N significantly decreased (L; p < 0.01) with the increasing amounts of artichoke bracts in the mixture. At 30 and 60 days of ensiling, the highest lactic acid concentration was observed at intermediate proportions of artichoke bracts (p < 0.01). Cumulative gas production was higher in artichoke bracts than in the berseem silage. After 24 h of incubation, the highest value (p < 0.05) of truly dry matter, organic matter, natural detergent fiber degradability, and NH3-N concentration was recorded with 500 g/kg of forage mixtures. As the artichoke bract concentration increased, the partitioning factor and ruminal pH declined linearly (p ≤ 0.05). No significant differences were observed for total volatile fatty acids and volatile fatty acids molar proportions. In summary, co-ensiling artichoke bracts with berseem at a ratio of 1:1 might be a promising and easy method for the production of high-quality silage from legume forage with positively manipulating rumen fermentation.

4.
J Gen Appl Microbiol ; 43(2): 109-114, 1997 Apr.
Article in English | MEDLINE | ID: mdl-12501342

ABSTRACT

An in vitro study was conducted to examine the effects of salinomycin (SL) and vitamin B(6) (pyridoxine hydrochloride) (B(6)) on the production of lysine from the three stereoisomers of 2,6-diaminopimelic acid (DAP-SI) by mixed rumen protozoa (P), mixed rumen bacteria (B), and their mixture (PB). P, B, and PB were isolated from the rumen of goats given a concentrate mixture and lucerne cubes, separately incubated for 12 h with and without DAP-SI (5 mM) as a substrate and SL (5 &mgr;g/ml) and/or B(6) (10 &mgr;g/ml) as additives. In P suspensions, SL and B(6) reduced the amount of DAP-SI by 2.1 times (p<0.001, where p is probability) and 19.9% (p<0.05), respectively, and also increased the production of lysine by 2.4 times (p<0.001) and 26.8% (p <0.05), respectively, during 12 h incubation. In B suspensions, the reductions of DAP-SI with a single addition of SL or B(6) were 8.5% (p<0.001) and 2.7%, respectively, and lysine production increased by 54.3 and 32.9% (p<0.001), respectively, during 12 h incubation. In PB suspensions, the reductions of DAP-SI were 21.9 and 11.7% (p<0.001) with a single addition of SL or B(6), respectively, and the production of lysine increased by 81.4 and 39.4% (p<0.001), respectively, during 12 h incubation. When SL and B(6) were added together to the P, B, and PB suspensions, lysine production further increased by 12.3, 21.3, and 12.4% more than the cases of adding SL only during 12 h incubation, respectively. SL and B(6) were demonstrated to enhance the production of lysine from DAP-SI by mixed rumen protozoa, mixed rumen bacteria and their mixture in this study.

SELECTION OF CITATIONS
SEARCH DETAIL
...